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This grant concerns the development of embedded function methods to accurately and

efficiently predict heat transfer and skin friction coefficients in high-speed compressible

turbulent flows near walls, without computing the flow all the way to the wall. In general, the

methodology being developed can be applied for a wide variety of outer region turbulence

models, including two equation models. However, in the current program the effectiveness of

the technique is being demonstrated using simple outer-region models similar to the Baldwin-

Lomax and Cebeci-Smith eddy viscosity models. It is worthwhile to note that the embedded

function method generally applies to attached turbulent flows where a turbulent wall structure

exists and is attached to the wall. Such situations normally occur over a large portion of a

computational domain. Virtually all outer region turbulent models are tied tightly to a

logarithmic behavior in the mean profile near the wall. Experimental data for turbulent

separated flows shows that the logarithmic behavior in the mean profile disappears as

separation is approached; although some experiments indicate that a logarithmic profile can be

established downstream in a region of backflow, the "constants" in the logarithmic zone are

radically different from those in the upstream boundary layer. This is simply an indication

that the physics near the wall in a separated turbulent flow are substantially different from

those in an attached turbulent flow. For this reason, the present program has focussed on

developing methods and testing of the concepts for attached flows rather than trying to force a

conventional "law of the wall" into a zone of backflow; not surprisingly, previous attempts at

the latter approach (using two-equation models) have not met with any significant degree of

success (Rubesin and Viegas, 1985). Essentially, this is because although the dynamics of the

near-wall flow in an attached turbulent boundary layer are relatively well documented (Walker

et al, 1989), the dynamical features of a zone of reversed turbulent flow are not well

understood and have not been thoroughly investigated experimentally. It is likely that an

appropriate modification of the embedded function approach can be made for reversed flow at
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a later stage. However, because the compressibility introduces effects and issues that have

been dealt with only marginally in the literature, the present work has principally focussed on

attached high-speed flows.

The research program started in January, 1988, as a cooperative effort involving

Lehigh University and United Technologies Research Center. The theoretical analysis and

algorithms are being developed at Lehigh University under the direction of Professor J. D. A.

Walker; the work forms the basis of the dissertation of Ph.D. candidate Mr. Jun He, who is

supported as a research assistant on the grant. Implementation of the algorithms was to be

carried out at UTlZC by Mr. Greg Power in the NASA Langley code NASCRIN; this is an

explicit Navier-Stokes code which utilizes the Baldwinn-Lomax turbulence model and uses a

mixing length formulation (with a Van Driest damping factor) in order to calculate the flow all

the way to the wall. Due to heavy contractual commitments at UTRC during 1988, Mr.

Power was not able to devote the necessary time to effectively implement the embedded

function methodology in the NASCRIN code; due to budget limitations, NASA support for the

UTRC portion of the effort was not renewed for the second year (1989) of the project. In

March, 1989, UTRC hired Dr. Seyhan Ersoy to carry out introduction of the embedded

functions into NASCRIN; the unused funds from the first year of the grant as well as

significant additional financial support from UTRC is being used to pay Dr. Ersoy's salary

(until March, 1990).

At present the theoretical work at Lehigh is presently on the course laid out in the

original research proposal for a three year effort. The wall function method has been extended

up through the supersonic range to hypersonic speeds. The algorithms have been successfully

introduced into the NASCRIN code at UTRC; testing of the procedures is currently being

carried out for progressively more complex flow situations.

2. _2_V..F.d_IF.,__ OF LEHIGH THEORETICAL WORK

There are a number of fundamental issues relating to compressible turbulent flow

which have not been adequately addressed in the previous literature. Unfortunately, there has

been a trend to extrapolate turbulence models and modeling concepts for incompressible flows

(where data is abundant) to the high-speed compressible case, essentially without modification.

In order to ensure good success with an embedded function approach, it is vital to isolate the

correct scaling laws in the overlap region. A number of the fundamental issues have been

resolved by the present research.
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A first questionconcernsthe preciseform of the law of the wall for compressible flow.

An extrapolation of the incompressible law of the wall would suggest

in the overlap zone 1. Here _ is the Von Karman constant and Ci -- 5; in addition A i is a

parameter proportional to the wall-layer thickness whose value is (v/ur) for incompressible

flow but whose form for compressible flow needs to be determined. The present research has

shown that equation (1) is not adequate for compressible flows and that the "compressible law

of the wall" is of the form

where Y is the Dorodnitsyn variable

Thus the normal variable in equation (2) implicitly contains the density; a form of

A i ---- pt0/u_Re is indicated by the analysis (Re here is the Reynolds number and the subscript

w indicates a quantity is evaluated at the wall).

A second important issue relates to the temperature distribution, since an important

objective of the present analysis is to develop the embedded function method for flows with

heat transfer. A central question is whether it is the static temperature or the total enthalpy

which is logarithmic in the overlap zone. Unfortunately, there is very little data available for

direct measurements of either static temperature or total enthalpy, particularly near the

surface. The present analysis, as well as some very recent data confirms that the total

1Note that all variables in this report are dimensionless with the exception of those

denoted with an asterisk superscript.



enthalpyis logarithmicandin the Dorodnitsynvariable;thegeneralform is

\ )
(4)

Here Iw is the total temperature at the wall, Pr is the Prandtl number and n 0 is the analogous

quantity to the von Karman constant; in addition Q is a dimensionless heat transfer parameter

at the wall defined by

Q _- -k*(cgT*/0y*) y*--0
p_U,H_

(5)

Here the subscript • denotes a quantity evaluated at the mainstream.

A third issue relates to the common belief that incompressible turbulence models can

be used without modification as the Mach number increases. The current research has shown

that this cannot be done without incurring substantial error. For example, the outer region

Baldwin-Lomax model is an eddy viscosity formulation with

-pu'v' = p (y) Ou
Oy'

(6)

for which

/CvKYm_Fm_z y > ym, (7)
e(y) : _, u_:y y _< ym.

where Fma_ is the maximum of the function y[cgu/cgy[ and ymax is the corresponding ordinate;

ym denotes the point where both portions of the function are the same. The model is modified

in the wall layer to become a mixing length model with a Von Driest damping factor. The

present research has shown that models like equation (6) are not self-consistent in a high-speed
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compressible flow and will produce progressively worse results as the Mach number increases.

Consider, for example, the eddy viscosity function. The wall layer is a region of

constant total stress to leading order and the asymptotic analysis shows that

-pu'v' _ p,_u_ as Y+ --* oo. (8)

Here pw is the wall density and Y+ is the scaled Howarth-Dorodnitsyn variable

y+ YurRe Ii-- /Jw ' Y= pdy. (9)

If the turbulence model used in the outer region is an eddy viscosity model, it will have the

following form

0u (10)
. pu'v I = p_ "_y,

where e is the eddy viscosity function. In the outer layer, u is in a defect form which behaves

logarithmically in the overlap zone (in the Howarth-Dorodnitsyn variable), viz.

as Y/Ao _ 0. Combining equations (9), (10), and (11), it follows that

Y as _ ---* 0. (12)_ "" p2 nr _:

This is the critical relation that a self-consistent turbulence model should satisfy in a

compressible flow. With increasing distance from the wall, the eddy viscosity function must



deviatefrom the linearbehaviorin the overlapzone,and for low Mach numberstypical far-

field eddyviscosityformulaeareof the form

~ KU 6", (13)

for the Cebeci-Smith model and

e -_ Cp KYma_ F,_, (14)

for the Baldwin-Lomax model. During the past year, a number of models were considered

with the requirements that: (1) e exhibit the asymptotic form (12) near the overlap zone; (2)

for low Me, the model should reduce to either of equations (13) or (14); and (3) no additional

correlations should be introduced. Unfortunately, there is a large number of possible models

that could be considered which satisfy these criteria and several models were considered in the

following way.

A considerable data base (at least for the velocity profiles) exists where the flow is

close to being in equilibrium. In order to test the embedded function procedures and a variety

of potential models, the limiting case of self-similar flow was considered; in this limit the

governing equations reduce to ordinary differential equations which can be solved accurately

and quickly to facilitate comparison with measured data. As a result of extensive data

comparisons, the model listed below for eddy viscosity is believed to adequately incorporate the

effect of compressibility and provide a universal description over a range of Mach numbers:

pepw 6"
_--_ K U_, Y > Y1,

= (15)P_ u_. _ Y, Y < Y1,
p2

where Y1 = pe6*UeK/_. This is the modification of the Cebeci-Smith model while, for the



Baldwin-Lomaxmodel,the first of equations(15) is replaced by

_O rr;a_ _O_

e -- p, Cp K Y,,_ F,,_. (16)

In these equations, subscripts _ and , denote quantities evaluated at the wall and in the

mainstream respectively. A similar model has also been obtained for heat transfer and this, as

well as a detailed description of a portion of the work, is described in the accompanying paper.

An an example of the type of profile produced in the present analysis, the predicted

velocity profile using the model in equations (15) and (16) is shown in Figure 1; the data was

taken at a Mach number of 4.5 for an adiabatic wall. Note that this is not a curve fit and,

beside the wall and mainstream temperature and velocity, the only input is 6", the

incompressible displacement thickness at that streamwise location. In Figure 2 a

corresponding plot is shown, where the conventional "incompressible" Baldwin-Lomax model

(given in equation (7)) has been used. It is clear that an "incompressible" model is

inadequate; in additon, it emerges that the skin friction is considerably overpredicted by the

"incompressible" model. Further comparisons over a Mach number range up to 10 are given

in the attached paper.

To date, some important aspects resolved by the research program are as follows:

(1) The use of the Howarth-Dorodnitsyn variable

is critical. Both the velocity and total enthalpy profiles exhibit a logarithmic behavior in the

overlap zone over a wide range of Mach numbers. The profile behavior appears to be universal

when expressed in terms of Y.

(2) Standard turbulence models which have been tuned for low Mach number flows

should not be used in an unaltered fashion as the Mach number increases. The modifications

introduced in the present study involve factors of the density and appear to be universal with

increasing Mach number.



(3) A new modelhasbeendevelopedfor heat transfer in a high-speed compressible

flow. The model was developed independent of a Reynolds analogy argument or a turbulent

Prandtl number concept. The correspondesnce with existing measured total enthalpy data is

very encouraging.

(4) One byproduct of the present research is a set of self-similar profiles for total

enthalpy and velocity which can be used to initiate a Navier-Stokes calculation, simply by

estimating a displacement thickness distribution along each wall.

(5) A set of embedded functions for total enthalpy and velocity has been developed for

supersonic flows.

3. Overview of UTRC Computational Work

The following discussion summarizes the work being carried out at UTRC by Greg D.

Power and Seyhan Ersoy.

The analytical wall layer model of Walker 1 has been incorporated into the NASCRIN

full Navier-Stokes (NS) code de_celoped originally by Kumar 2. This model provides an

analytical description of the velocity and energy profiles in the inner layer of a turbulent

boundary layer. Therefore, the numerical solution technique for the bulk of the flow need not

be applied in the region where the wall layer model is applicable. In order to accurately

determine skin friction and heat transfer, standard solution techniques require up to half of the

grid nodes be placed within the inner layer. Since the wall layer model replaces the numerical

solution in the inner layer, computer storage is reduced and, indirectly, the CPU time required

to reach a steady-state solution is also reduced. As a preliminary step, this concept has been

incorporated into the ABLE 3 boundary-layer code by Walker et al 4. In the following

discussion, a review of the wall layer concept in the ABLE code, and several aspects of the

implementation of this concept in NASCRIN, are presented.

Algorithm

The ABLE code is a direct boundary-layer solution procedure. The governing

equations were originaly written using a turbulent flow extension of the Levy-Less

transformation. In this transformation, the normal coordinate is scaled by the zero-pressure

gradient boundary-layer growth resulting in a transformed coordinate, 77. In the wall-layer

model version of ABLE, the normal coordinate is scaled by a parameter A. This parameter is

adjusted as a function of the solution at each marching step in order to maintain y+ --- 60 at
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the first grid point from the wall, i.e. the grid is adapted to the edge of the inner layer. The

points which would normally be needed within the inner layer are deleted, thus reducing the

number of points across the entire boundary laeyr by approximately half.

The critical information used to determine the solution at the second grid point (02) is

that the outer defect law and the inner layer solution match in the log-law region

(50 < y+ < 100). In this region, the inner and outer velocity profiles take the form:

Inner Solution: y+_ oo

u + =llogy+_F Ci, (18)

Outer Solution: O -'_ oo

F =1 + u,( 1 logo + Co), (19)

where

and

Also the independent variables are given by

y+ pwurY

where the definition of the normal coordinate will be discussed later.

The unknowns in these equations are u*, Co, and F 2 (the solution at 02). A third

condition is required in order to close the system. This condition is that the solution at 0a

(F3) must also obey the log law given by equation (19). The solution at 03 is a result of

integrating the boundary-layer equations across the layer using, in this case, the Cebeci-Smith 5
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turbulencemodel. The boundary-layersolution and the solution at 712are determined

iterativelyat eachstreamwisestation in two steps.

1. For anassumedu. and F2,equation(19) is solvedat T/2 for Co. Then, the velocities

from equation (1) and (2) are matched to determine a new u,, i.e.

i : _ log (pwu_ A)u. _, h-_ +C_-Co,

2. Equation (19) is evaluated at rj2 and r/a, then these equations are subtracted to get

u (°3)F 3- F 2 -_-g log _ .

The boundary-layer equations are solved with this equation as the lower boundary

condition.

The above steps are repeated until the solution at the current marching station converges. In

summary, the value of u. is determined from matching the solution of 72 to the known inner

layer solution and the flow field is determined using a gradient boundary condition which is

based on the log law behavior of the outer layer veloctiy profile. Note that a similar iteration

scheme is used for enthalpy.

It is not practical to adjust the NS grid in order to adapt to the inner layer thickness.

Since the only requirement for the match point is that this point lies within the log-law region,

a fixed grid can be used where the solution below y+ _ 60 is evaluated analytically and the

solution above the match point is computed using the numerical algorithm with a boundary

condition set at the match point. In this matter, the grid location of the match point can

change as a function of time and space.

NASCRIN is an explicit time-marching procedure. The boundary conditions are set at

the boundaries for each time based on the solution in the flow field at the previous time. In

the original formulation, the wall layer boundary condition is implemented at the match point

in a two-step procedure:
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1. The friction velocity,Ur, is evaluatedfrom the solutionat the match point and the

first point abovethe matchbasedon the loglaw behaviorof the outerprofile:

Urn+l ° Urn
Ur--_

2. The solution at the match point is updated by matching the analytical inner layer

solution (u +) and the outer solution from NASCRIN:

u_n = uru+(y+).

If the solution is not converged, the friction velocty computed in step 1 could force the

solution at the match point (step 2) to change substantially. Since the explicit time-marching

algorithm does not react immediately to changes in boundary conditons, the next time step 1

is implemented and there could be a large change in ur. Repeating these steps as the solution

progresses eventually results in the solution diverging. Two methods to stabilize the iterative

scheme are to under-relax the ur calculation or to implement the wall layer model every few

time steps rather than every time step. Both of these techniques slowed, but did not

eliminate, the divergence. A third technique was attempted which is related to experimental

methods for determining the skin friction from velocty profiles. Instead of using the solutions

at rn and rn+1 in step 1, the gradient of the log plot is determined over the entire range for

which the log law is applicable. Therefore, the solution at the match point does not have as

much of an influence on the evaluation of u_. This technique also slowed, but did not stop,

the divergence.

Note that the steps outlined above for NASCRIN are implemented in the reverse order

to the ABLE implementation, i.e. the solution gradient is used to determine Ur and the inner-

layer analytical solution is imposed as a boundary condition. Therefore, a new algorithm was

constructed for the NS code which more closely resembles the ABLE algorithm:

1. uT is determined from the solution at one point above the match point by matching

the analytical inner layer solution (u +) and the outer solution from NASCRIN:
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Urn+!
Ur -- + + ,

u (Y_+I)

2. The solution at the match point is determined through an explicit implementation of

the gradient boundary condition based on the log law behavior of the outer solution:

uum= u._+l + -_- log

There are two advantages to this approach. First, ur does not vary significantly from

iteration to iteration since the solution at m+l slowly adjusts to the new boundary condition.

Second, the gradient boundary condition is somewhat weaker so that the boundary condition

also does not vary rapidly. Preliminary results using this technique have been encouraging.

Compatibility

In order for the above algorithms to succeed, the outer solution provided by the

boundary-layer or the Navier-Stokes procedure must be compatible with the inner-layer

anlaytical solution. The value of the friction velocity is determined from the Navier-Stokes

solution based on the analytical inner layer solution. The friction veloctiy is then used to set

the boundary condition at the match point. If the velocity profile in the region where

NASCRIN is applied does not behave identically to the inner layer solution, the value of ur

will be in error and thus the entire solution will be incorrect. The turbulence model is the

primary influence on the velocity profile.

Most turbulence models, including the Baldwin-Lomax model, were developed for

incompressible flows. At supersonic conditions, the density can vary greatly across the

boundary layer and, thus, the incompressible assumption is invalid. By correlating with

numerous experimental data sets, Walker 6 has found that the normal coordinate (Y) should be

defined as
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Using this definltioni the logarithmic regions of u + vs. y+ plots collapse to a single

curve independent of Mach number and wall temperature. Traditionally, Y has been set to

the physical distance (y) from the wall. Using this incompressible formulation can lead to

large errors in eddy viscosity. For example, the density at the wall of an insulated flat plate

immersed in a Mach 2.5 flow is nearly one-half of the free-stream density. Using the

compressible formula, the eddy viscosity in the inner layer can be shown to be

P_ K2y2 0u
/zi =_-_ _-_ fory <yc.

The Baldwin-Lomax T outer layer eddy viscosity takes the form

pepw KCcpyma:_Fmaz for y > y¢,I_o = _

where y¢ is the cross-over at which tli < po.

Emgr_e__

The algorithm described above for incorporating the wall-layer model into the

NASClZIN code requires that boundary conditons be set at a point within the flow field and

that the solution below this point not be updated. First the wall-layer boundary conditions for

the streamwise velocity and enthalpy are set at the match point in a new subroutine,

WALFUN. In this subroutine, the analytical solutions for these variables are also set from the

match point to the wall. Two other boundary conditions are required. The normal velocity at

and below the match is determined by integrating the steady-state continuity equation. Since

the log-law region is well within the boundary layer, the normal pressure gradient must be

zero, and, thus, the pressure within the inner layer is set using this fact.

In subroutine VISCOS, where the explicit integration takes place, the time step (At) is

set to zero at and below the match point. By doing so, the solution in the inner layer is not

updated in the integration scheme. Note that the match point need not be a constant grid line

as a function of time or streamwise distances.
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The logicdescribedabove has been implemented in NASCRIN. In order to check the

algorithm, first a converged solution of NASCRIN with integration to the wall was obtained.

A second run was made by simulating the wall-layer implementation, i.e. the converged

solution for streamwise velocity and enthalpy at the match point was held fixed and the other

variables were set as described above. The solution converged to essentially the same solution

as when integrating to the wall.

The compressibility corrections for the Baldwin-Lomax turbulence model have also

been incorporated. The code has been applied using the original and modified models to a test

case corresponding to the experimental configuration studied by Coles s. The configuration

consists of an insulated fiat plate immersed in a Mach 2.5 flow at a Reynolds number of nearly

3 x 10S/meter. Skin friction and a limited number of velocity profiles are available for

comparison. The results computed using the original turbulence model overpredict the skin

friction data while the results computed using the modified model underpredict the data as

shown in Figure 3. This study indicates that there is a significant impact of the

compressibility corrections on the solution.

Implementation of the wall-layer model is currently being studied. Preliminary results

indicate that the second formulation described in the algorithm section of this memo is stable

and converges. The time step required for stability of the explicit integration scheme was

increased due to the wall-layer implementation by a factor of almost 2.5 compared to the full

NASCRIN solution. However, the results using the wall-layer model do not match the data or

the NASCRIN solution when integrated to the wall. A comparison of Ur computed with and

without the wall-layer model is shown on Figure 4. The primary discrepancy is that the slope

of the u_ (skin friction) curve does not match the expected slope. The compatibility of the

inner-layer analytical solution and the outer-layer NASRIN solution may be the source of the

error. In fact, the discrepancy in this solution is most likely related to the discrepancy found

with the turbulence model above.

At this time, the algorithm is stable and leads to converged solutions. The

compatibility of the inner-layer solution with the turbulence model is being studied.
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